India and the US have signed an MoU for establishing Laser Interferometer Gravitational-Wave Observatory (LIGO) in India that will play significant role in carrying forward frontline research on various aspects of gravitational wave astronomy. The MoU comes about a month after the Union Cabinet approved the construction of the long-awaited third LIGO interferometer. Department of Atomic Energy Secretary Sekhar Basu and the US’ National Science Foundation (NSF) France Cordova signed the MoU in this regard in the presence of Prime Minister Narendra Modi and LIGO scientists here.
The construction of the long-awaited third LIGO interferometer, expected to be functional by 2023, will significantly improve the ability of scientists to pinpoint the sources of gravitational waves and analyse the signals.
Modi, who is currently in the US to attend the two-day Nuclear Security Summit (NSS) met scientists of LIGO who recently proved gravitational waves theory. He also interacted with the Indian student scientists part of the LIGO project.
Gravitational waves ripples in the fabric of space and time produced by dramatic events in the universe, such as merging black holes, and predicted as a consequence of Albert Einstein’s 1915 general theory of relativity carry information about their origins and about the nature of gravity that cannot otherwise be obtained.
With their first direct detection, announced on February 11, scientists opened a new window onto the cosmos. The twin LIGO Observatories at Hanford, Washington, and Livingston, Louisiana, are funded by the US National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT.
Advanced LIGO a major upgrade to the sensitivity of the instruments compared to the first generation LIGO detectors began scientific operations in September 2015. LIGO will provide Indian researchers with the components and training to build and run the new Advanced LIGO detector, which will then be operated by the Indian team, the press statement said.
In a statement, the Union cabinet had said “LIGO-India will also bring considerable opportunities in cutting edge technology for the Indian industry” which will be responsible for the construction of the new observatory’s 4-kilometer-long beam tubes. In addition, the Cabinet statement said “The project will motivate Indian students and young scientists to explore newer frontiers of knowledge, and will add further impetus to scientific research in the country.”
Indian scientists at Raja Ramanna Centre for Advanced Technology (RRCAT) Indore have designed a special testing/prototype facility for receiving Advanced LIGO parts; have been training the teams that will install and commission the detector; and are currently cross-checking the IPR vacuum-system drawings against the Advanced LIGO detector drawings, to ensure a good fit and rapid installation for the third Advanced LIGO detector.