News Nation Logo

Twitter posts will predict effect of seasonal flu in populations?

According To A Latest Invention Done By The Scientists Of North Eastern University Your Tweets Could Help Track The Spread Of Seasonal Flu In Real Time.

PTI | Updated on: 11 May 2017, 04:50:39 PM
Twitter posts will predict effect of seasonal flu in populations?


According to a latest invention done by the scientists of North eastern University your tweets could help track the spread of seasonal flu in real time.

Moreover they have developed a new model that uses Twitter posts to predict how the infection may affect a population.

Researchers from North eastern University in the US gathered tweets along with parameters of each season's epidemic, such as the incubation period of the disease, the immunisation rate, how many people an individual with the virus can infect, and the viral strains present.

They applied forecasting and other algorithms to the key parameters informed by the Twitter data.

Researchers then matched the resulting simulations withthe surveillance data generated by the US Centre for DiseaseControl (CDC) and clinical and personal reports of influenza-like illnesses from the three countries.

They analysed the evolving dynamics revealed in the past data, and were able to select the model that would most likely forecast the future.

Researchers then tested the model against officialinfluenza surveillance systems. They found that it accuratelyforecast the disease's evolution up to six weeks in advance -significantly earlier than other models.

Also Read: Heavy drinkers from poor socio-economic status may be at greater risk of illness death

"It will enable public health agencies to plan ahead inallocating medical resources and launching campaigns that encourage individuals to take preventative measures such asvaccination and increased hand washing," said Alessandro Vespignani, from Northeastern University.

"In the past, we had no knowledge of initial conditionsfor the flu," Vespignani said.

"The initial conditions - which show where and when an epidemic began as well as the extent of infection - functionas a launching pad for forecasting the spread of any disease," he said.

The explicit modelling of the disease's parameters -information about the dynamics of the disease itself - sets the model apart from others in the challenge, researchers said.

For example, researchers could identify the week when the epidemic would reach its peak and the magnitude of that peak with an accuracy of 70 to 90 per cent six weeks in advance ofthe event.

Also Read: 'Vidisha fought for her life': Miracle baby survives after 6 heart attack and 12-hour long surgery

"By capturing the key parameters, we could track how serious the flu was each year compared with every other yearand see what was driving the spread," said Qian Zhang from North eastern University.

For all the Latest Lifestyle News, Health & Fitness News, Download News Nation Android and iOS Mobile Apps.

First Published : 11 May 2017, 04:30:00 PM